Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang-Ce Rong,* Xiao-Yue Li, Chang-Sheng Yao, Hai-Ying Wang and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
Icrong2005@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.053$
$w R$ factor $=0.148$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[1-(3,4-Dichlorophenyl)-3-oxo-3-phenyl-propyl]-3,4-dihydro-2H-naphthalen-1-one

The title compound, $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$, was synthesized by the reaction of 3,4-dihydronaphthalen- $1(2 \mathrm{H})$-one with 3-(3,4-dichlorophenyl)-1-phenylprop-2-en-1-one under solvent-free conditions at room temperature. X-ray analysis reveals that the cyclohexanone ring adopts an envelope conformation

Comment

1,5-Diketones are extremely important synthetic intermediates and are desirable starting materials for preparing many heterocyclic (Ariyan \& Suschitiky, 1961) and polyfunctional compounds (Edwin \& Alexanden, 1992; Gill et al., 1952). The solvent-free reaction has attracted much attention in recent years (Tanaka \& Toda, 2000) and has been proved to have many advantages: reduced pollution, low costs, and simplicity in process and handling. The solid-state Michael addition has performed well recently (Goud et al., 1995; Annunziata et al., 1997; Li et al., 1999). We report here the crystal structure of the title compound, (I), which was synthesized by the solvent-free Michael addition reaction of 3,4-dihydronaphthalen-1 2 H)-one and 3-(3,4-dichlorophen-yl)-1-phenylprop-2-en-1-one at room temperature.

(I)

In (I), the fused cyclohexanone ring adopts an envelope conformation (Fig.1), with the atom C25 deviating from the C16/C17/C18/C23/C24 plane by 0.684 (4) A. The C4-C9 and C10-C15 planes form dihedral angles of 85.6 (1) and $74.6(1)^{\circ}$, respectively, with respect to the $\mathrm{C} 16-\mathrm{C} 24$ plane. The crystal packing is stablized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the C18-C23 benzene ring (Table 2).

Experimental

Compound (I) was prepared by the reaction of 3,4-dihydro-naphthalen- $1(2 \mathrm{H})$-one $(2 \mathrm{mmol})$ with 3 -(3,4-dichlorophenyl)-1-phenylprop-2-en-1-one (2 mmol) catalysed by $\mathrm{NaOH}(0.2 \mathrm{~g})$ under solvent-free conditions (m.p. 469-470 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Received 16 November 2005 Accepted 28 November 2005 Online 7 December 2005

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=423.31$
Monoclinic, $P 2_{1} / n$
$a=9.9826(19) \AA$
$b=17.858(3) \AA$
$c=11.703(2) \AA$
$\beta=91.667(3)^{\circ}$
$V=2085.4(6) \AA^{3}$
$Z=4$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=423.31$
Monoclinic, $P 2_{1} / n$
Mo $K \alpha$ radiation
$a=9.9826$ (19) A
$b=17.858$ (3) A
$\beta=91.667$
$V=2085.4(6) \AA^{3}$
$Z=4$
Cell parameters from 2344
reflections
$\theta=2.3-21.1^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.42 \times 0.37 \times 0.29 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	3669 independent reflections
\quad diffractometer	2008 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.038$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-11 \rightarrow 11$
$T_{\min }=0.874, T_{\max }=0.910$	$k=-16 \rightarrow 21$
10745 measured reflections	$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
All H -atom parameters refined
$w R\left(F^{2}\right)=0.148$
$S=1.00$
3669 reflections
342 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.074 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.58 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{C} 11-\mathrm{C} 12$	$1.714(3)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.207(3)$
$\mathrm{Cl} 2-\mathrm{C} 13$	$1.730(3)$	$\mathrm{O} 2-\mathrm{C} 17$	$1.215(3)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 16$	$110.1(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15$	$117.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$114.0(3)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 1$	$123.2(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$117.9(3)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 1$	$112.9(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$123.1(3)$	$\mathrm{C} 25-\mathrm{C} 16-\mathrm{C} 1$	$115.3(2)$

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 9 \cdots C g 1^{\mathrm{i}}$	$0.91(3)$	$2.97(3)$	$3.855(6)$	$166(3)$

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} . C g 1$ is the centroid of the C18-C23 benzene ring.

H atoms were located in a difference map and refined isotropically. The $\mathrm{C}-\mathrm{H}$ distances range from 0.89 (3) to 1.04 (3) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of the Education Committee of Jiangsu Province, and the Natural Science Foundation (No. 04XLB14) of Xuzhou Normal University for financial support.

References

Annunziata, S., Aldo, S., Margherita, R. D., Manueia, G. \& Arrigo, S. (1997). Tetrahedron Lett. 38, 289-290.
Ariyan, Z. S. \& Suschitiky, H. (1961). J. Chem. Soc. pp. 2242-2244.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Edwin. C. \& Alexanden, M. W. (1992). J. Chem. Soc. Dalton Trans. pp. 29472950.

Gill, N. S., James, K. B., Lions, F. \& Potts, K. T. (1952). J. Am. Chem. Soc. 74, 4923-4928.
Goud, B. S., Panneerselvam, K., Zacharias, D. E. \& Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans 2, pp. 325-330.
Li, X. L., Wang, Y. M., Matsuura, T. \& Meng, J. B. (1999). Heterocycles, 51, 2639-2651.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanaka, K. \& Toda, F. (2000). Chem. Rev. 100, 1025-1074.

